Antibacterial nanocarriers of resveratrol with gold and silver nanoparticles

Mater Sci Eng C Mater Biol Appl. 2016 Jan 1:58:1160-9. doi: 10.1016/j.msec.2015.09.068. Epub 2015 Sep 18.

Abstract

This study focused on the preparation of resveratrol nanocarrier systems and the evaluation of their in vitro antibacterial activities. Gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) for resveratrol nanocarrier systems were synthesized using green synthetic routes. During the synthesis steps, resveratrol was utilized as a reducing agent to chemically reduce gold and silver ions to AuNPs and AgNPs. This system provides green and eco-friendly synthesis routes that do not involve additional chemical reducing agents. Resveratrol nanocarriers with AuNPs (Res-AuNPs) and AgNPs (Res-AgNPs) were observed to be spherical and to exhibit characteristic surface plasmon resonance at 547 nm and at 412-417 nm, respectively. The mean size of the nanoparticles ranged from 8.32 to 21.84 nm, as determined by high-resolution transmission electron microscopy. The face-centered cubic structure of the Res-AuNPs was confirmed by high-resolution X-ray diffraction. Fourier-transform infrared spectra indicated that the hydroxyl groups and C=C in the aromatic ring of resveratrol were involved in the reduction reaction. Res-AuNPs retained excellent colloidal stability during ultracentrifugation and re-dispersion, suggesting that resveratrol also played a role as a capping agent. Zeta potentials of Res-AuNPs and Res-AgNPs were in the range of -20.58 to -48.54 mV. Generally, against Gram-positive and Gram-negative bacteria, the Res-AuNPs and Res-AgNPs exhibited greater antibacterial activity compared to that of resveratrol alone. Among the tested strains, the highest antibacterial activity of the Res-AuNPs was observed against Streptococcus pneumoniae. The addition of sodium dodecyl sulfate during the synthesis of Res-AgNPs slightly increased their antibacterial activity. These results suggest that the newly developed resveratrol nanocarrier systems with metallic nanoparticles show potential for application as nano-antibacterial agents with enhanced activities.

Keywords: Antibacterial activity; Gold nanoparticles; Nanocarriers; Resveratrol; Silver nanoparticles.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / chemistry*
  • Anti-Bacterial Agents / pharmacology
  • Bacteria / drug effects
  • Gold / chemistry*
  • Gold / pharmacology
  • Metal Nanoparticles / chemistry*
  • Microscopy, Atomic Force
  • Particle Size
  • Resveratrol
  • Silver / chemistry*
  • Silver / pharmacology
  • Stilbenes / chemistry*
  • Stilbenes / pharmacology

Substances

  • Anti-Bacterial Agents
  • Stilbenes
  • Silver
  • Gold
  • Resveratrol