Lead-Free α-La₂WO₆ Ferroelectric Thin Films

ACS Appl Mater Interfaces. 2015 Nov 11;7(44):24409-18. doi: 10.1021/acsami.5b01776. Epub 2015 Oct 28.

Abstract

(001)-Epitaxial La2WO6 (LWO) thin films are grown by pulsed laser deposition on (001)-oriented SrTiO3 (STO) substrates. The α-phase (high-temperature phase in bulk) is successfully stabilized with an orthorhombic structure (a = 16.585(1) Å, b = 5.717(2) Å, c = 8.865(5) Å). X-ray-diffraction pole-figure measurements suggest that crystallographic relationships between the film and substrate are [100]LWO ∥ [110]STO, [010]LWO ∥ [11̅0]STO and [001]LWO ∥ [001]STO. From optical properties, investigated by spectroscopic ellipsometry, we extract a refractive-index value around 2 (at 500 nm) along with the presence of two absorption bands situated, respectively at 3.07 and 6.32 eV. Ferroelectricity is evidenced as well on macroscale (standard polarization measurements) as on nanoscale, calling for experiments based on piezo-response force-microscopy, and confirmed with in situ scanning-and-tunneling measurements performed with a transmission electron microscope. This work highlights the ferroelectric behavior, at room temperature, in high-temperature LWO phase when stabilized in thin film and opens the way to new functional oxide thin films dedicated to advanced electronic devices.

Keywords: ferroelectricity; high-resolution X-ray diffraction; piezoresponse force microscopy; pulsed laser deposition; transmission electron microscopy.

Publication types

  • Research Support, Non-U.S. Gov't