Understanding Moisture and Carbon Dioxide Involved Interfacial Reactions on Electrochemical Performance of Lithium-Air Batteries Catalyzed by Gold/Manganese-Dioxide

ACS Appl Mater Interfaces. 2015 Nov 4;7(43):23876-84. doi: 10.1021/acsami.5b05250. Epub 2015 Oct 21.

Abstract

Lithium-air (Li-air) battery works essentially based on the interfacial reaction of 2Li + O2 ↔ Li2O2 on the catalyst/oxygen-gas/electrolyte triphase interface. Operation of Li-air batteries in ambient air still remains a great challenge despite the recent development, because some side reactions related to moisture (H2O) and carbon dioxide (CO2) will occur on the interface with the formation of some inert byproducts on the surface of the catalyst. In this work, we investigated the effect of H2O and CO2 on the electrochemical performance of Li-air batteries to evaluate the practical operation of the batteries in ambient air. The use of a highly efficient gold/δ-manganese-dioxide (Au/δ-MnO2) catalyst helps to understand the intrinsic mechanism of the effect. We found that H2O has a more detrimental influence than CO2 on the battery performance when operated in ambient air. The battery operated in simulated dry air can sustain a stable cycling up to 200 cycles at 400 mA g(-1) with a relatively low polarization, which is comparable with that operated in pure O2. This work provides a possible method to operate Li-air batteries in ambient air by using optimized catalytic electrodes with a protective layer, for example a hydrophobic membrane.

Keywords: ambient operation; carbon dioxide; gold/manganese-dioxide; interfacial reactions; lithium−air batteries; moisture.

Publication types

  • Research Support, Non-U.S. Gov't