Particle-size effects in the formation of bicontinuous Pickering emulsions

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Sep;92(3):032308. doi: 10.1103/PhysRevE.92.032308. Epub 2015 Sep 23.

Abstract

We demonstrate that the formation of bicontinuous emulsions stabilized by interfacial particles (bijels) is more robust when nanoparticles rather than microparticles are used. Emulsification via spinodal demixing in the presence of nearly neutrally wetting particles is induced by rapid heating. Using confocal microscopy, we show that nanospheres allow successful bijel formation at heating rates two orders of magnitude slower than is possible with microspheres. In order to explain our results, we introduce the concept of mechanical leeway, i.e., nanoparticles benefit from a smaller driving force towards disruptive curvature. Finally, we suggest that leeway mechanisms may benefit any formulation in which challenges arise due to tight restrictions on a pivotal parameter, but where the restrictions can be relaxed by rationally changing the value of a more accessible parameter.