Mulberry leaves (Morus alba L.) ameliorate obesity-induced hepatic lipogenesis, fibrosis, and oxidative stress in high-fat diet-fed mice

Genes Nutr. 2015 Nov;10(6):46. doi: 10.1007/s12263-015-0495-x. Epub 2015 Oct 13.

Abstract

Obesity is associated with chronic diseases such as fatty liver, type 2 diabetes, cardiovascular disease, and severe metabolic syndrome. Obesity causes metabolic impairment including excessive lipid accumulation and fibrosis in the hepatic tissue as well as the increase in oxidative stress. In order to investigate the effect of mulberry leaf (Morus alba L.) extract (MLE) on obesity-induced oxidative stress, lipogenesis, and fibrosis in liver, MLE has been gavaged for 12 weeks in high-fat diet (HFD)-induced obese mice. MLE treatment significantly ameliorated LXRα-mediated lipogenesis and hepatic fibrosis markers such as α-smooth muscle actin, while MLE up-regulated lipolysis-associated markers such as lipoprotein lipase in the HFD-fed mice. Moreover, MLE normalized the activities of antioxidant enzymes including heme oxygenase-1 and glutathione peroxidase in accordance with protein levels of 4-hydroxynonenal in the HFD-fed mice. MLE has beneficial effects on obesity-related fatty liver disease by regulation of hepatic lipid metabolism, fibrosis, and antioxidant defense system. MLE supplementation might be a potential therapeutic approach for obesity-related disease including non-alcoholic fatty liver disease.

Keywords: Fatty liver; Hepatic lipid metabolism; Liver fibrosis; Mulberry leaf; Oxidative stress.