Aging affects the responsiveness of rat peritoneal macrophages to GM-CSF and IL-4

Biogerontology. 2016 Apr;17(2):359-71. doi: 10.1007/s10522-015-9620-x. Epub 2015 Oct 13.

Abstract

Macrophages undergo significant functional alterations during aging. The aim of the present study was to investigate changes of rat macrophage functions and response to M1/M2 polarization signals with age. Therefore, resident and thioglycollate-elicited peritoneal macrophages from young (3-month-old) and aged (18-19-month-old) rats were tested for phagocytic capacity and ability to secrete inflammatory mediators following in vitro stimulation with LPS and GM-CSF, and IL-4, prototypic stimulators for classically (M1) and alternatively activated (M2) macrophages, respectively. Aging increased the frequency of monocyte-derived (CCR7+ CD68+) and the most mature (CD163+ CD68+) macrophages within resident and thioglycollate-elicited peritoneal macrophages, respectively. The ability to phagocyte zymosan of none of these two cell subsets was affected by either LPS and GM-CSF or IL-4. The upregulated production of IL-1β, IL-6 and IL-10 and downregulated that of TGF-β was observed in response to LPS in resident and thioglycollate-elicited macrophages from rats of both ages. GM-CSF elevated production of IL-1β and IL-6 in resident macrophages from aged rats and in thioglycollate-elicited macrophages from young rats. Unexpectedly, IL-4 augmented production of proinflammatory mediators, IL-1β and IL-6, in resident macrophages from aged rats. In both resident and thioglycollate-elicited macrophages aging decreased NO/urea ratio, whereas LPS but not GM-SCF, shifted this ratio toward NO in the macrophages from animals of both ages. Conversely, IL-4 reduced NO/urea ratio in resident and thioglycollate-elicited macrophages from young rats only. In conclusion, our study showed that aging diminished GM-CSF-triggered polarization of elicited macrophages and caused paradoxical IL-4-driven polarization of resident macrophages toward proinflammatory M1 phenotype. This age-related deregulation of macrophage inflammatory mediator secretion and phagocytosis in response to M1/M2 activators may lead to the deficient control of infectious and/or inflammatory diseases in advanced age.

Keywords: Aging; GM-CSF; IL-4; Macrophage polarization; Rat.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aging*
  • Animals
  • Cytokines / biosynthesis
  • Granulocyte-Macrophage Colony-Stimulating Factor / pharmacology*
  • Interleukin-4 / pharmacology*
  • Lipopolysaccharides / pharmacology
  • Macrophages, Peritoneal / cytology
  • Macrophages, Peritoneal / drug effects*
  • Macrophages, Peritoneal / metabolism
  • Male
  • Phagocytosis / drug effects
  • Rats
  • Thioglycolates / pharmacology

Substances

  • Cytokines
  • Lipopolysaccharides
  • Thioglycolates
  • Interleukin-4
  • Granulocyte-Macrophage Colony-Stimulating Factor