Scaling law and microstructure of alginate hydrogel

Carbohydr Polym. 2016 Jan 1:135:101-9. doi: 10.1016/j.carbpol.2015.08.086. Epub 2015 Aug 29.

Abstract

The gelation of alginate in aqueous solution was studied as a function of Ca(2+) concentration. At each given concentration of alginate, a critical gel concentration [Formula: see text] , was successfully determined for the first time using the Winter-Chambon criterion. The critical gel concentration [Formula: see text] was found to increase linearly with alginate concentration. At the same time, the critical relaxation exponent n decreased and the critical gel strength Sg increased linearly with alginate concentration. An improved egg-box model was proposed to describe the change in gel junction and gel network. In the stable gel state, the plateau modulus Ge of alginate gel depended on Ca(2+) concentration according to a power-law scaling, Ge=kɛ(1.5), where ɛ is the relative distance of a gelling variable (Ca(2+) concentration in this case) from the gel point ( [Formula: see text] ). The FESEM images verified the microstructure of alginate gel in which alginate chains associated into fibrils in the presence of Ca(2+) ions. The fibrillar diameter and network density increased with increasing Ca(2+) ion concentration while alginate concentration had a weak influence on fibrillar diameter.

Keywords: Alginate; Egg-box model; Rheology; Scaling law; Viscoelasticity.

Publication types

  • Research Support, Non-U.S. Gov't