MicroRNA (miRNA)-Mediated Pathogenetic Signaling in Alzheimer's Disease (AD)

Neurochem Res. 2016 Feb;41(1-2):96-100. doi: 10.1007/s11064-015-1734-7. Epub 2015 Oct 6.

Abstract

Alzheimer's disease (AD) is an expanding health and socioeconomic concern in industrialized societies, and the leading cause of intellectual impairment in our aging population. The cause of AD remains unknown, and there are currently no effective treatments to stop or reverse the progression of this uniquely human and age-related neurological disorder. Elucidation of the AD mechanism and factors that contribute to the initiation, progression, and spreading of this chronic and fatal neurodegeneration will ultimately result in improved and effective diagnostics and therapeutic strategies.microRNAs (miRNAs) comprise a relatively recently discovered category of 20-24 nucleotide non-coding RNAs that function post-transcriptionally in shaping the transcriptome of the cell, and in doing so, contribute to the molecular-genetics and phenotype of human CNS health and disease. To date about 2550 unique mature human miRNAs have been characterized, however only highly selected miRNA populations appear to be enriched in different anatomical compartments within the CNS.This general commentary for the 'Special Issue: 40th Year of Neurochemical Research' will bring into perspective (i) some very recent findings on the extraordinary biophysics and signaling properties of CNS miRNA in AD and aging human brain; (ii) how specific intrinsic biophysical attributes of miRNAs may play defining roles in the establishment, proliferation and spreading of the AD phenotype; and (iii) how miRNAs can serve as prospective therapeutic targets and biomarkers potentially useful in the clinical management of this terminal neurological disease whose incidence in our rapidly aging population is reaching epidemic proportions.

Keywords: AD diagnostics; Alzheimer’s disease (AD); RNA complexity; Viroids; microRNA (miRNA); non-coding RNA (ncRNA).

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Alzheimer Disease / genetics
  • Alzheimer Disease / metabolism*
  • Humans
  • Signal Transduction*