Characterizing nerve growth factor-p75(NTR) interactions and small molecule inhibition using surface plasmon resonance spectroscopy

Anal Biochem. 2016 Jan 15:493:21-6. doi: 10.1016/j.ab.2015.09.019. Epub 2015 Oct 3.

Abstract

Nerve growth factor (NGF) is critical for the proliferation, differentiation, and survival of neurons through its binding to the p75(NTR) and TrkA receptors. Dysregulation of NGF has been implicated in several pathologies, including neurodegeneration (i.e., Parkinson's and Alzheimer's diseases) and both inflammatory and neuropathic pain states. Therefore, small molecule inhibitors that block NGF-receptor interactions have significant therapeutic potential. Small molecule antagonists ALE-0540, PD90780, Ro 08-2750, and PQC 083 have all been reported to inhibit NGF from binding the TrkA receptor. Interestingly, the characterization of the ability of these molecules to block NGF-p75(NTR) interactions has not been performed. In addition, the inhibitory action of these molecules has never been evaluated using surface plasmon resonance (SPR) spectroscopy, which has been proven to be highly useful in drug discovery applications. In the current study, we used SPR biosensors to characterize the binding of NGF to the p75(NTR) receptor in addition to characterizing the inhibitory potential of the known NGF antagonists. The results of this study provide the first evaluation of the ability of these compounds to block NGF binding to p75(NTR) receptor. In addition, only PD90780 was effective at inhibiting the interaction of NGF with p75(NTR), suggesting receptor selectivity between known NGF inhibitors.

Keywords: Biosensor; NGF inhibition; Nerve growth factor; Surface plasmon resonance; TrkA; p75(NTR).

MeSH terms

  • Flavins
  • Heterocyclic Compounds, 3-Ring / chemistry
  • Heterocyclic Compounds, 3-Ring / pharmacology
  • Humans
  • Nerve Growth Factor / antagonists & inhibitors
  • Nerve Growth Factor / metabolism*
  • Protein Binding / drug effects
  • Protein Interaction Maps / drug effects*
  • Pteridines / chemistry
  • Pteridines / pharmacology
  • Receptor, Nerve Growth Factor / antagonists & inhibitors
  • Receptor, Nerve Growth Factor / metabolism*
  • Receptor, trkA / antagonists & inhibitors
  • Receptor, trkA / metabolism
  • Small Molecule Libraries / chemistry*
  • Small Molecule Libraries / pharmacology*
  • Surface Plasmon Resonance / methods*

Substances

  • 2,3,4,10-tetrahydro-7,10-dimethyl-2,4-dioxobenzo(g)pteridine
  • Flavins
  • Heterocyclic Compounds, 3-Ring
  • Pteridines
  • Receptor, Nerve Growth Factor
  • Small Molecule Libraries
  • ALE 0540
  • Nerve Growth Factor
  • Receptor, trkA