Scaling Laws of the Two-Electron Sum-Energy Spectrum in Strong-Field Double Ionization

Phys Rev Lett. 2015 Sep 18;115(12):123001. doi: 10.1103/PhysRevLett.115.123001. Epub 2015 Sep 15.

Abstract

The sum-energy spectrum of two correlated electrons emitted in nonsequential strong-field double ionization (SFDI) of Ar was studied for intensities of 0.3 to 2×10^{14} W/cm^{2}. We find the mean sum energy, the maximum of the distributions as well as the high-energy tail of the scaled (to the ponderomotive energy) spectra increase with decreasing intensity below the recollision threshold (BRT). At higher intensities the spectra collapse into a single distribution. This behavior can be well explained within a semiclassical model providing clear evidence of the importance of multiple recollisions in the BRT regime. Here, ultrafast thermalization between both electrons is found occurring within three optical cycles only and leaving its clear footprint in the sum-energy spectra.