Seasonal rationalization of river water quality sampling locations: a comparative study of the modified Sanders and multivariate statistical approaches

Environ Sci Pollut Res Int. 2016 Feb;23(3):2308-28. doi: 10.1007/s11356-015-5349-y. Epub 2015 Sep 26.

Abstract

The design of surface water quality sampling location is a crucial decision-making process for rationalization of monitoring network. The quantity, quality, and types of available dataset (watershed characteristics and water quality data) may affect the selection of appropriate design methodology. The modified Sanders approach and multivariate statistical techniques [particularly factor analysis (FA)/principal component analysis (PCA)] are well-accepted and widely used techniques for design of sampling locations. However, their performance may vary significantly with quantity, quality, and types of available dataset. In this paper, an attempt has been made to evaluate performance of these techniques by accounting the effect of seasonal variation, under a situation of limited water quality data but extensive watershed characteristics information, as continuous and consistent river water quality data is usually difficult to obtain, whereas watershed information may be made available through application of geospatial techniques. A case study of Kali River, Western Uttar Pradesh, India, is selected for the analysis. The monitoring was carried out at 16 sampling locations. The discrete and diffuse pollution loads at different sampling sites were estimated and accounted using modified Sanders approach, whereas the monitored physical and chemical water quality parameters were utilized as inputs for FA/PCA. The designed optimum number of sampling locations for monsoon and non-monsoon seasons by modified Sanders approach are eight and seven while that for FA/PCA are eleven and nine, respectively. Less variation in the number and locations of designed sampling sites were obtained by both techniques, which shows stability of results. A geospatial analysis has also been carried out to check the significance of designed sampling location with respect to river basin characteristics and land use of the study area. Both methods are equally efficient; however, modified Sanders approach outperforms FA/PCA when limited water quality and extensive watershed information is available. The available water quality dataset is limited and FA/PCA-based approach fails to identify monitoring locations with higher variation, as these multivariate statistical approaches are data-driven. The priority/hierarchy and number of sampling sites designed by modified Sanders approach are well justified by the land use practices and observed river basin characteristics of the study area.

Keywords: Design of monitoring network; Discrete and diffuse pollution load; Land use application; Modified sanders approach; Multivariate statistical technique; Rationalization of sampling location; Watershed information.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cluster Analysis
  • Environmental Monitoring / methods
  • Environmental Monitoring / statistics & numerical data*
  • India
  • Principal Component Analysis
  • Rivers / chemistry*
  • Seasons
  • Water Pollution / analysis
  • Water Pollution / statistics & numerical data*
  • Water Quality