Peculiar Behavior of (U,Am)O(2-δ) Compounds for High Americium Contents Evidenced by XRD, XAS, and Raman Spectroscopy

Inorg Chem. 2015 Oct 19;54(20):9749-60. doi: 10.1021/acs.inorgchem.5b01357. Epub 2015 Sep 25.

Abstract

In U(1-x)Am(x)O(2±δ) compounds with low americium content (x ≤ 20 atom %) and oxygen-to-metal (O/M) ratios close to 2.0, Am(III+) cations are charge-balanced by an equivalent amount of U(V+) cations while the fluorite structure of pure U(IV+)O2 is maintained. Up to now, it is unknown whether this observation also holds for higher americium contents. In this study, we combined X-ray diffraction with Raman and X-ray absorption spectroscopies to investigate a U(0.5)Am(0.5)O(2±δ) compound. Our results indicate that americium is again only present as Am(III+), while U(V+) remains below the amount required for charge balance. Unlike lower americium contents, this leads to an overall oxygen hypostoichiometry with an average O/M ratio of 1.92(2). The cationic sublattice is only slightly affected by the coexistence of large amounts of reduced (Am(III+)) and oxidized (U(V+)) cations, whereas significant deviations from the fluorite structure are evidenced by both extended X-ray absorption fine structure and Raman spectroscopies in the oxygen sublattice, with the observation of both vacancies and interstitials, the latter being apparently consistent with the insertion of U6O12 cuboctahedral-type clusters (as observed in the U4O9 or U3O7 phases). These results thus highlight the specificities of uranium-americium mixed oxides, which behave more like trivalent lanthanide-doped UO2 than U(1-x)Pu(x)O(2±δ) MOX fuels.