Phytosterols, Phytostanols, and Lipoprotein Metabolism

Nutrients. 2015 Sep 17;7(9):7965-77. doi: 10.3390/nu7095374.

Abstract

The efficacy of phytosterols and phytostanols added to foods and food supplements to obtain significant non-pharmacologic serum and low density lipoprotein (LDL) cholesterol reduction is well documented. Irrespective of age, gender, ethnic background, body weight, background diet, or the cause of hypercholesterolemia and, even added to statin treatment, phytosterols and phytostanols at 2 g/day significantly lower LDL cholesterol concentration by 8%-10%. They do not affect the concentrations of high density lipoprotein cholesterol, lipoprotein (a) or serum proprotein convertase subtilisin/kexin type 9. In some studies, phytosterols and phytostanols have modestly reduced serum triglyceride levels especially in subjects with slightly increased baseline concentrations. Phytosterols and phytostanols lower LDL cholesterol by displacing cholesterol from mixed micelles in the small intestine so that cholesterol absorption is partially inhibited. Cholesterol absorption and synthesis have been carefully evaluated during phytosterol and phytostanol supplementation. However, only a few lipoprotein kinetic studies have been performed, and they revealed that LDL apoprotein B-100 transport rate was reduced. LDL particle size was unchanged, but small dense LDL cholesterol concentration was reduced. In subjects with metabolic syndrome and moderate hypertriglyceridemia, phytostanols reduced not only non- high density lipoprotein (HDL) cholesterol concentration but also serum triglycerides by 27%, and reduced the large and medium size very low density lipoprotein particle concentrations. In the few postprandial studies, the postprandial lipoproteins were reduced, but detailed studies with apoprotein B-48 are lacking. In conclusion, more kinetic studies are required to obtain a more complete understanding of the fasting and postprandial lipoprotein metabolism caused by phytosterols and phytostanols. It seems obvious, however, that the most atherogenic lipoprotein particles will be diminished.

Keywords: LDL; cholesterol absorption; phytostanol; phytosterol.

Publication types

  • Review

MeSH terms

  • Animals
  • Dietary Fats / administration & dosage*
  • Dietary Fats / blood
  • Dietary Supplements*
  • Humans
  • Hypercholesterolemia / blood
  • Hypercholesterolemia / diagnosis
  • Hypercholesterolemia / diet therapy*
  • Intestinal Absorption
  • Kinetics
  • Lipoproteins / blood*
  • Liver / metabolism
  • Particle Size
  • Phytosterols / administration & dosage
  • Phytosterols / blood*
  • Postprandial Period
  • Treatment Outcome

Substances

  • Dietary Fats
  • Lipoproteins
  • Phytosterols