Dynamic and fluid-structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models

Comput Mech. 2015 Jun;55(6):1211-1225. doi: 10.1007/s00466-015-1166-x.

Abstract

This paper builds on a recently developed immersogeometric fluid-structure interaction (FSI) methodology for bioprosthetic heart valve (BHV) modeling and simulation. It enhances the proposed framework in the areas of geometry design and constitutive modeling. With these enhancements, BHV FSI simulations may be performed with greater levels of automation, robustness and physical realism. In addition, the paper presents a comparison between FSI analysis and standalone structural dynamics simulation driven by prescribed transvalvular pressure, the latter being a more common modeling choice for this class of problems. The FSI computation achieved better physiological realism in predicting the valve leaflet deformation than its standalone structural dynamics counterpart.

Keywords: Arbitrary Lagrangian–Eulerian; Bioprosthetic heart valve; Fluid–structure interaction; Fung-type hyperelastic model; Immersogeometric analysis; Isogeometric analysis; Kirchhoff–Love shell; NURBS and T-splines.