A MALDI-TOF MS analysis study of the binding of 4-(N,N-dimethylamino)pyridine to amine-bis(phenolate) chromium(III) chloride complexes: mechanistic insight into differences in catalytic activity for CO2/epoxide copolymerization

Faraday Discuss. 2015:183:31-46. doi: 10.1039/c5fd00046g.

Abstract

Amine-bis(phenolato)chromium(III) chloride complexes, [LCrCl], are capable of catalyzing the copolymerization of cyclohexene oxide with carbon dioxide to give poly(cyclohexane) carbonate. When combined with 4-(N,N-dimethylamino)pyridine (DMAP) these catalyst systems yield low molecular weight polymers with moderately narrow polydispersities. The coordination chemistry of DMAP with five amine-bis(phenolato)chromium(III) chloride complexes was studied by matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The amine-bis(phenolato) ligands were varied in the nature of their neutral pendant donor-group and include oxygen-containing tetrahydrofurfuryl and methoxyethyl moieties, or nitrogen-containing N,N-dimethylaminoethyl or 2-pyridyl moieties. The relative abundance of mono and bis(DMAP) adducts, as well as DMAP-free ions is compared under various DMAP : Cr complex ratios. The [LCr](+) cations show the ability to bind two DMAP molecules to form six-coordinate complex ions in all cases, except when the pendant group is N,N-dimethylaminoethyl (compound ). Even in the presence of a 4 : 1 ratio of DMAP to Cr, no ions corresponding to [L3Cr(DMAP)2](+) were observed for the complex containing the tertiary sp(3)-hybridized amino donor in the pendant arm. The difference in DMAP-binding ability of these compounds results in differences in catalytic activity for alternating copolymerization of CO2 and cyclohexene oxide. Kinetic investigations by infrared spectroscopy of compounds 2 and 3 show that polycarbonate formation by 3 is twice as fast as that of compound 2 and that no initiation time is observed.