Entropic lattice Boltzmann method for multiphase flows: Fluid-solid interfaces

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Aug;92(2):023308. doi: 10.1103/PhysRevE.92.023308. Epub 2015 Aug 28.

Abstract

The recently introduced entropic lattice Boltzmann model (ELBM) for multiphase flows [A. Mazloomi M., S. S. Chikatamarla, and I. V. Karlin, Phys. Rev. Lett. 114, 174502 (2015)] is extended to the simulation of dynamic fluid-solid interface problems. The thermodynamically consistent, nonlinearly stable ELBM together with a polynomial representation of the equation of state enables us to investigate the dynamics of the contact line in a wide range of applications, from capillary filling to liquid drop impact onto a flat surfaces with different wettability. The static interface behavior is tested by means of the liquid column in a channel to verify the Young-Laplace law. The numerical results of a capillary filling problem in a channel with wettability gradient show an excellent match with the existing analytical solution. Simulations of drop impact onto both wettable and nonwettable surfaces show that the ELBM reproduces the experimentally observed drop behavior in a quantitative manner. Results reported herein demonstrate that the present model is a promising alternative for studying the vapor-liquid-solid interface dynamics.