Essential oil from Xylopia frutescens Aubl. reduces cytosolic calcium levels on guinea pig ileum: mechanism underlying its spasmolytic potential

BMC Complement Altern Med. 2015 Sep 16:15:327. doi: 10.1186/s12906-015-0849-3.

Abstract

Background: Xylopia frutescens Aubl. (embira, semente-de-embira or embira-vermelha), is used in folk medicine as antidiarrheal. The essential oil from its leaves (XF-EO) has been found to cause smooth muscle relaxation. Thus, the aim of this study was to investigate the spasmolytic action by which XF-EO acts on guinea pig ileum.

Methods: The components of the XF-EO were identified by gas chromatography-mass spectrometry. Segments of guinea pig ileum were suspended in organ bath containing modified Krebs solution at 37 °C, bubbled with carbogen mixture under a resting tension of 1 g. Isotonic contractions were registered using kymographs and isometric contractions using force transducer coupled to an amplifier and computer. Fluorescence measurements were obtained with a microplate reader using Fluo-4.

Results: Forty-three constituents were identified in XF-EO, mostly mono- and sesquiterpenes. XF-EO has been found to cause relaxation on guinea pig ileum. The essential oil inhibited in a concentration-dependent manner both CCh- and histamine-induced phasic contractions, being more potent on histamine-induced contractions as well as antagonized histamine-induced cumulative contractions in a non-competitive antagonism profile. XF-EO relaxed in a concentration-dependent manner the ileum pre-contracted with KCl and histamine. Since the potency was smaller in organ pre-contracted with KCl, it was hypothesized that XF-OE would be acting as a K(+) channel positive modulator. In the presence of CsCl (non-selective K(+) channel blocker), the relaxant potency of XF-OE was not altered, indicating a non-participation of these channels. Moreover, XF-EO inhibited CaCl2-induced cumulative contractions in a depolarizing medium nominally without Ca(2+) and relaxed the ileum pre-contracted with S-(-)-Bay K8644 in a concentration-dependent manner, thus, was confirmed the inhibition of Ca(2+) influx through Cav1 by XF-EO. In cellular experiments, the viability of longitudinal layer myocytes from guinea pig ileum was not altered in the presence of XF-OE and the Fluo-4-associated fluorescence intensity in these intestinal myocytes stimulated by histamine was reduced by the essential oil, indicating a [Ca(2+)]c reduction.

Conclusion: Spasmolytic action mechanism of XF-EO on guinea pig ileum can involve histaminergic receptor antagonism and Ca(2+) influx blockade, which results in [Ca(2+)]c reduction leading to smooth muscle relaxation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Calcium / analysis*
  • Guinea Pigs
  • Ileum / drug effects*
  • Oils, Volatile / pharmacology*
  • Parasympatholytics / pharmacology*
  • Plant Oils / pharmacology*
  • Xylopia / chemistry*

Substances

  • Oils, Volatile
  • Parasympatholytics
  • Plant Oils
  • Calcium