Nanoscale Imaging of Local Few-Femtosecond Near-Field Dynamics within a Single Plasmonic Nanoantenna

Nano Lett. 2015 Oct 14;15(10):6601-8. doi: 10.1021/acs.nanolett.5b02363. Epub 2015 Sep 21.

Abstract

The local enhancement of few-cycle laser pulses by plasmonic nanostructures opens up for spatiotemporal control of optical interactions on a nanometer and few-femtosecond scale. However, spatially resolved characterization of few-cycle plasmon dynamics poses a major challenge due to the extreme length and time scales involved. In this Letter, we experimentally demonstrate local variations in the dynamics during the few strongest cycles of plasmon-enhanced fields within individual rice-shaped silver nanoparticles. This was done using 5.5 fs laser pulses in an interferometric time-resolved photoemission electron microscopy setup. The experiments are supported by finite-difference time-domain simulations of similar silver structures. The observed differences in the field dynamics across a single particle do not reflect differences in plasmon resonance frequency or dephasing time. They instead arise from a combination of retardation effects and the coherent superposition between multiple plasmon modes of the particle, inherent to a few-cycle pulse excitation. The ability to detect and predict local variations in the few-femtosecond time evolution of multimode coherent plasmon excitations in rationally synthesized nanoparticles can be used in the tailoring of nanostructures for ultrafast and nonlinear plasmonics.

Keywords: ITR-PEEM; multipolar surface plasmons; nanorice; optical antennas; surface plasmon retardation; ultrafast plasmonics.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Microscopy, Electron, Scanning
  • Nanostructures*