A Novel Nanoprobe for Multimodal Imaging Is Effectively Incorporated into Human Melanoma Metastatic Cell Lines

Int J Mol Sci. 2015 Sep 8;16(9):21658-80. doi: 10.3390/ijms160921658.

Abstract

To facilitate efficient drug delivery to tumor tissue, several nanomaterials have been designed, with combined diagnostic and therapeutic properties. In this work, we carried out fundamental in vitro and in vivo experiments to assess the labeling efficacy of our novel theranostic nanoprobe, consisting of glycogen conjugated with a red fluorescent probe and gadolinium. Microscopy and resazurin viability assays were used to study cell labeling and cell viability in human metastatic melanoma cell lines. Fluorescence lifetime correlation spectroscopy (FLCS) was done to investigate nanoprobe stability. Magnetic resonance imaging (MRI) was performed to study T₁ relaxivity in vitro, and contrast enhancement in a subcutaneous in vivo tumor model. Efficient cell labeling was demonstrated, while cell viability, cell migration, and cell growth was not affected. FLCS showed that the nanoprobe did not degrade in blood plasma. MRI demonstrated that down to 750 cells/μL of labeled cells in agar phantoms could be detected. In vivo MRI showed that contrast enhancement in tumors was comparable between Omniscan contrast agent and the nanoprobe. In conclusion, we demonstrate for the first time that a non-toxic glycogen-based nanoprobe may effectively visualize tumor cells and tissue, and, in future experiments, we will investigate its therapeutic potential by conjugating therapeutic compounds to the nanoprobe.

Keywords: fluorescence lifetime correlation spectroscopy; fluorescence microscopy; high throughput microscopy; magnetic resonance imaging; melanoma brain metastasis; nanoprobe; theranostics; zeta potential.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Line, Tumor
  • Cell Movement
  • Cell Survival
  • Contrast Media / chemistry
  • Cytoplasm / metabolism
  • Glycogen / metabolism
  • Humans
  • Hydrogen-Ion Concentration
  • Lysosomes / metabolism
  • Magnetic Resonance Imaging / methods
  • Melanoma / metabolism*
  • Melanoma / pathology*
  • Molecular Imaging / methods*
  • Molecular Probes*
  • Multimodal Imaging*
  • Nanotechnology*
  • Spectrometry, Fluorescence
  • Staining and Labeling

Substances

  • Contrast Media
  • Molecular Probes
  • Glycogen