Measurement of lithium isotope ratio in various concentration samples using degenerate four-wave mixing

Appl Opt. 2015 Aug 20;54(24):7154-9. doi: 10.1364/AO.54.007154.

Abstract

Phase-conjugate degenerate four-wave mixing (PCDFWM), as a sub-Doppler spectroscopy technique, can be employed to selectively analyze Li isotopes. It is necessary to explore the optimal incident powers in order to measure the Li isotope ratio accurately. In this case, the power condition of PCDFWM signal is first investigated using samples with various concentrations. The results indicate that the power characteristic is intimately related to the sample concentration, and the optimal incident power conditions for different sample concentrations are different. Under their own optimized power conditions, we measured the Li7/Li6 isotope ratio in Li standard solutions of 500, 300, and 200 ng/ml. The corresponding results are, respectively, 11.571±0.003, 11.552±0.003, and 11.582±0.004, which are in good agreement with the value calculated by atomic absorption spectroscopy. The information obtained from this study suggests that PCDFWM can be used to measure isotope ratios accurately in samples with different concentrations under suitable power conditions.

Publication types

  • Research Support, Non-U.S. Gov't