Concurrent spatial and spectral filtering by resonant nanogratings

Opt Express. 2015 Sep 7;23(18):23428-35. doi: 10.1364/OE.23.023428.

Abstract

Optical devices incorporating resonant periodic layers constitute an emerging technological area. Recent advances include spectral filters, broadband mirrors, and polarizers. Here, we demonstrate concurrent spatial and spectral filtering as a new outstanding attribute of this device class. This functionality is enabled by a unique, near-complete, reflection state that is discrete in both angular and spectral domains and realized with carefully-crafted nanogratings operating in the non-subwavelength regime. We study the pathway and inter-modal interference effects inducing this intriguing reflection state. In a proof-of-concept experiment, we obtain angular and spectral bandwidths of ~4 mrad and ~1 nm, respectively. This filter concept can be used for focus-free spectral and spatial filtering in compact holographic and interferometric optical instruments.