Thulium-doped fiber laser utilizing a photonic crystal fiber-based optical low-pass filter with application in 1.7 μm and 1.8 μm band

Opt Express. 2015 Jul 27;23(15):19681-8. doi: 10.1364/OE.23.019681.

Abstract

This paper describes a low pass filter based on photonics crystal fiber (PCF) partial ASE suppression, and its application within a 1.7 µm to 1.8 µm band thulium-doped fiber amplifier (TDFA) and a thulium-doped fiber laser (TDFL). The enlargement of air holes around the doped core region of the PCF resulted in a low-pass filter device that was able to attenuate wavelengths above the conventional long cut-off wavelength. These ensuing long cut-off wavelengths were 1.85 μm and 1.75 μm, and enabled a transmission mechanism that possessed a number of desirable characteristics. The proposed optical low-pass filter was applied within a TDFA and TDFL system. Peak spectrum was observed at around 1.9 μm for conventional TDF lasers, while the proposed TDF laser with PCF setup had fiber laser peak wavelengths measured at downshifted values of 1.74 μm and 1.81 μm.