Chiral polymers of intrinsic microporosity: selective membrane permeation of enantiomers

Angew Chem Int Ed Engl. 2015 Sep 14;54(38):11214-8. doi: 10.1002/anie.201504934.

Abstract

Following its resolution by diastereomeric complexation, 5,5',6,6'-tetrahydroxy-3,3,3',3'-tetramethyl-1,1'-spirobisindane (TTSBI) was used to synthesize a chiral ladder polymer, (+)-PIM-CN. (+)-PIM-COOH was also synthesized by the acid hydrolysis of (+)-PIM-CN. Following characterization, both (+)-PIM-CN and (+)-PIM-COOH were solvent cast directly into semipermeable membranes and evaluated for their ability to enable the selective permeation of a range of racemates, including mandelic acid (Man), Fmoc-phenylalanine, 1,1'-bi-2-naphthol (binol), and TTSBI. High ee values were observed for a number of analytes, and both materials exhibited high permeation rates. A selective diffusion-permeation mechanism was consistent with the results obtained with these materials. Their high permeability, processability, and ease of chemical modification offer considerable potential for liquid-phase membrane separations and related separation applications.

Keywords: chirality; enantioselectivity; membranes; permeation; polymers of intrinsic microporosity.