The impact on the soil microbial community and enzyme activity of two earthworm species during the bioremediation of pentachlorophenol-contaminated soils

J Hazard Mater. 2016 Jan 15:301:35-45. doi: 10.1016/j.jhazmat.2015.08.034. Epub 2015 Aug 24.

Abstract

The ecological effect of earthworms on the fate of soil pentachlorophenol (PCP) differs with species. This study addressed the roles and mechanisms by which two earthworm species (epigeic Eisenia fetida and endogeic Amynthas robustus E. Perrier) affect the soil microbial community and enzyme activity during the bioremediation of PCP-contaminated soils. A. robustus removed more soil PCP than did E. foetida. A. robustus improved nitrogen utilisation efficiency and soil oxidation more than did E. foetida, whereas the latter promoted the organic matter cycle in the soil. Both earthworm species significantly increased the amount of cultivable bacteria and actinomyces in soils, enhancing the utilisation rate of the carbon source (i.e. carbohydrates, carboxyl acids, and amino acids) and improving the richness and evenness of the soil microbial community. Additionally, earthworm treatment optimized the soil microbial community and increased the amount of the PCP-4-monooxygenase gene. Phylogenic classification revealed stimulation of indigenous PCP bacterial degraders, as assigned to the families Flavobacteriaceae, Pseudomonadaceae and Sphingobacteriacea, by both earthworms. A. robustus and E. foetida specifically promoted Comamonadaceae and Moraxellaceae PCP degraders, respectively.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bacteria / genetics
  • Bacteria / metabolism
  • Biodegradation, Environmental
  • Catalase / metabolism
  • Cellulase / metabolism
  • Fungi / metabolism
  • Mixed Function Oxygenases / genetics*
  • Oligochaeta / metabolism*
  • Pentachlorophenol / metabolism*
  • RNA, Bacterial / genetics
  • RNA, Ribosomal, 16S / genetics
  • Soil Microbiology*
  • Soil Pollutants / metabolism*
  • Urease / metabolism
  • beta-Fructofuranosidase / metabolism

Substances

  • RNA, Bacterial
  • RNA, Ribosomal, 16S
  • Soil Pollutants
  • Pentachlorophenol
  • Mixed Function Oxygenases
  • Catalase
  • pentachlorophenol monooxygenase
  • beta-Fructofuranosidase
  • Cellulase
  • Urease