Captopril Increases Survival after Whole-Body Ionizing Irradiation but Decreases Survival when Combined with Skin-Burn Trauma in Mice

Radiat Res. 2015 Sep;184(3):273-9. doi: 10.1667/RR14113.1. Epub 2015 Aug 25.

Abstract

Past and recent radiation events have involved a high incidence of radiation combined injury where victims often succumb to serious infections as a consequence of bacterial translocation and subsequent sepsis. The risk of infection is exacerbated in radiation combined skin-burn injury (RCI), which increase vulnerability. Furthermore, no suitable countermeasures for radiation combined skin-burn injury have been established. In this study, we evaluated captopril as a potential countermeasure to radiation combined skin-burn injury. Captopril is an FDA-approved angiotensin-converting enzyme inhibitor that was previously reported to stimulate hematopoietic recovery after exposure to ionizing radiation. Female B6D2F1/J mice were whole-body bilateral (60)Co gamma-photon irradiated (dose rate of 0.4 Gy/min) with 9.5 Gy (LD70/30 for RCI), followed by nonlethal dorsal skin-burn injury under anesthesia (approximately 15% total-body surface-area burn). Mice were provided with acidified drinking water with or without dissolved captopril (0.55 g/l) for 30 days immediately after injury and were administered topical gentamicin (0.1% cream; day 1-10) and oral levofloxacin (90-100 mg/kg; day 3-16). Surviving mice were euthanized on day 30 after analyses of water consumption, body weight and survival. Our data demonstrate that, while treatment with captopril did mitigate mortality induced by radiation injury (RI) alone (55% captopril vs. 80% vehicle; n = 20, P < 0.05), it also resulted in decreased survival after radiation combined skin-burn injury (22% captopril vs. 41% vehicle; n = 22, P < 0.05). Moreover, captopril administration via drinking water produced an uneven dosage pattern among the different injury groups ranging from 74 ± 5.4 to 115 ± 2.2 mg/kg/day. Captopril treatment also did not counteract the negative alterations in hematology, splenocytes or bone marrow cellularity after either radiation injury or radiation combined skin-burn injury. These data suggest that captopril may exert its actions differently between the two injury models (RI vs. RCI) and that captopril dosing, when combined with topical and systemic antibiotic treatments, may not be a suitable countermeasure for RCI.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Angiotensin-Converting Enzyme Inhibitors / pharmacology*
  • Animals
  • Body Weight
  • Burns / mortality*
  • Captopril / pharmacology*
  • Female
  • Mice
  • Skin / injuries*
  • Whole-Body Irradiation*

Substances

  • Angiotensin-Converting Enzyme Inhibitors
  • Captopril