Two-Dimensional CaIn₂S₄/g-C₃N₄ Heterojunction Nanocomposite with Enhanced Visible-Light Photocatalytic Activities: Interfacial Engineering and Mechanism Insight

ACS Appl Mater Interfaces. 2015 Sep 2;7(34):19234-42. doi: 10.1021/acsami.5b05118. Epub 2015 Aug 21.

Abstract

Design and exploitation of efficient visible light photocatalytic systems for water splitting and degradation of organic dyes are of huge interest in the fields of energy conversion and environmental protection. Herein, two-dimensional CaIn2S4/g-C3N4 heterojunction nanocomposites with intimate interfacial contact have been synthesized by a facile two-step method. Compared with pristine g-C3N4 and CaIn2S4, the CaIn2S4/g-C3N4 heterojunction nanocomposites exhibited significantly enhanced H2 evolution and photocatalytic degradation of methyl orange (MO) activities under visible light irradiation. The optimal CaIn2S4/g-C3N4 nanocomposite shows a H2 evolution rate of 102 μmol g(-1) h(-1), which is more than 3 times that of pristine CaIn2S4. The mechanisms for improving the photocatalytic performance of the CaIn2S4/g-C3N4 nanocomposites were proposed by using the photoluminescence measurement and electrochemical analyses. It was demonstrated that the enhanced photocatalytic performance of CaIn2S4/g-C3N4 heterojunction nanocomposites mainly stems from the enhanced charge separation efficiency. In addition, a plausible mechanism for the degradation of MO dye over CaIn2S4/g-C3N4 nanocomposites is also elucidated using active species scavenger's studies.

Keywords: CaIn2S4; g-C3N4; mechanism; photocatalytic activity; two-dimensional interface.

Publication types

  • Research Support, Non-U.S. Gov't