Transforming exoelectrogens for biotechnology using synthetic biology

Biotechnol Bioeng. 2016 Apr;113(4):687-97. doi: 10.1002/bit.25723. Epub 2015 Sep 8.

Abstract

Extracellular electron transfer pathways allow certain bacteria to transfer energy between intracellular chemical energy stores and extracellular solids through redox reactions. Microorganisms containing these pathways, exoelectrogens, are a critical part of microbial electrochemical technologies that aim to impact applications in bioenergy, biosensing, and biocomputing. However, there are not yet any examples of economically viable microbial electrochemical technologies due to the limitations of naturally occurring exoelectrogens. Here we first briefly summarize recent discoveries in understanding extracellular electron transfer pathways, then review in-depth the creation of customized and novel exoelectrogens for biotechnological applications. We analyze engineering efforts to increase current production in native exoelectrogens, which reveals that modulating certain processes within extracellular electron transfer are more effective than others. We also review efforts to create new exoelectrogens and highlight common challenges in this work. Lastly, we summarize work utilizing engineered exoelectrogens for biotechnological applications and the key obstacles to their future development. Fueled by the development of genetic tools, these approaches will continue to expand and genetically modified organisms will continue to improve the outlook for microbial electrochemical technologies.

Keywords: abiotic-biotic interface; anode-respiring bacteria; extracellular electron transfer; microbial electrochemistry; microbial electrosynthesis.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Bacteria / metabolism*
  • Bioelectric Energy Sources*
  • Biotechnology / methods*
  • Electron Transport*
  • Synthetic Biology / methods*