Predictive discomfort of supine humans in whole-body vibration and shock environments

Ergonomics. 2016 Apr;59(4):568-81. doi: 10.1080/00140139.2015.1083125. Epub 2015 Sep 29.

Abstract

This work presents a predictive model to evaluate discomfort associated with supine humans during transportation, where whole-body vibration and repeated shock are predominant. The proposed model consists of two parts: (i) static discomfort resulting from body posture, joint limits and ambient discomfort; and (ii) dynamic discomfort resulting from the relative motion between the body segments as a result of transmitted vibration. Twelve supine subjects were exposed to single and 3D random vibrations and 3D shocks mixed with vibrations. The subjects' reported discomfort and biodynamic response were analysed under different support conditions, including a rigid surface, a stretcher and a stretcher with a spinal backboard. The results demonstrated good correlations between the predictive discomfort and the reported discomfort for the different conditions under consideration, with R(2) = 0.69-0.94 for individual subjects and R(2) = 0.94 for the group mean. The results also indicated a strong relationship between the head-neck and trunk angular velocities and discomfort during supine transportation. Practitioner Summary: The quantification of discomfort of supine humans under vibration and shocks by using a predictive model is an important contribution to this field, whereby the efficacy of different transport systems can be compared. The predictive discomfort model can be used as design criteria for ergonomic enhancement in supine transportation of humans.

Keywords: Transportation; discomfort model; spinal backboard; stretcher.

MeSH terms

  • Adolescent
  • Adult
  • Humans
  • Male
  • Models, Statistical
  • Motion
  • Patient Comfort*
  • Posture
  • Stretchers*
  • Supine Position*
  • Transportation of Patients*
  • Vibration*
  • Young Adult