Effect of cations in the background electrolyte on the adsorption kinetics of copper and cadmium and the isoelectric point of imogolite

J Hazard Mater. 2015 Dec 15:299:675-84. doi: 10.1016/j.jhazmat.2015.08.007. Epub 2015 Aug 6.

Abstract

Modification of surface charge and changes in the isoelectric point (IEP) of synthetic imogolite were studied for various cations in the background electrolyte (K(+), NH4(+), Mg(2+), and Ca(2+)). From the electrophoretic mobility data, it was established that the K(+) (KCl) concentration does not affect the IEP of imogolite; therefore, KCl is a suitable background electrolyte. In terms of the magnitude of changes in the IEP and surface charge, the cations may be ranked in the following order: Mg(2+)≈Ca(2+)>>NH4(+)>>K(+). Four different kinetic models were used to evaluate the influence of Mg(2+), Ca(2+), NH4(+), and K(+) on the adsorption of Cd and Cu on synthetic imogolite. When adsorption occurs in the presence of cations with the exception of K(+), the kinetics of the process is well described by the pseudo-first order model. On the other hand, when adsorption is conducted in the presence of K(+), the adsorption kinetics is well described by the pseudo-second order, Elovich, and Weber-Morris models. From the surface charge measurements, the affinity between imogolite and the cations and their effect on the adsorption of trace elements, namely Cu and Cd, were established.

Keywords: Adsorption Kinetics; Cadmium; Copper; Imogolite; Surface Charge.

Publication types

  • Research Support, Non-U.S. Gov't