Unwinding Au(+)···Au(+) Bonded Filaments in Ligand-Supported Gold(I) Polymer under Pressure

J Phys Chem Lett. 2014 Jul 3;5(13):2182-8. doi: 10.1021/jz500778t. Epub 2014 Jun 11.

Abstract

The ultimately thin single-strand gold filaments, of Au(+)···Au(+) bonded gold(I) diethyldithiocarbamate polymer, AuEt2DTC, can be transformed depending on pressure and solvate contents. When synthesized in the presence of CH2Cl2, it crystallizes into a tetragonal AuEt2DTC·xCH2Cl2 phase α with ligand-supported and unsupported Au(+)···Au(+) bonded filaments modulated into molecular Au8-pitch helices. Low contents of CH2Cl2 favors the β phase of significantly reduced volume and orthorhombic space group Fddd. The α-AuEt2DTC·xCH2Cl2 crystal exhibits a highly unusual negative-area compressibility, due to the spring-like compression of helices. Above 0.05 GPa, the crystal transforms to phase β, where the Au16-pitch helices partly unwind their turns, which relaxes the tension generated by external pressure between neighboring helices of the opposite handedness. This is a unique observation of atomic-scale helical filaments transformation, which otherwise is a universal process analogous to the helix reversal between DNA forms B and Z, and in macroscopic world it is similar to nonperiodic unwind kinks in grapevine tendrils and telephone cords. Pressure also reduces the differences between the ligand-supported and unsupported Au(+)···Au(+) bonds.

Keywords: X-ray diffraction; aurophilic interactions; gold compounds; high pressure; phase transition.