Oriented Immobilization of Fab Fragments by Site-Specific Biotinylation at the Conserved Nucleotide Binding Site for Enhanced Antigen Detection

Langmuir. 2015 Sep 8;31(35):9728-36. doi: 10.1021/acs.langmuir.5b01734. Epub 2015 Aug 24.

Abstract

Oriented immobilization of antibodies and antibody fragments has become increasingly important as a result of the efforts to reduce the size of diagnostic and sensor devices to miniaturized dimensions for improved accessibility to the end-user. Reduced dimensions of sensor devices necessitate the immobilized antibodies to conserve their antigen binding activity for proper operation. Fab fragments are becoming more commonly used in small-scaled diagnostic devices due to their small size and ease of manufacture. In this study, we used the previously described UV-NBS(Biotin) method to functionalize Fab fragments with IBA-EG11-Biotin linker utilizing UV energy to initiate a photo-cross-linking reaction between the nucleotide binding site (NBS) on the Fab fragment and IBA-Biotin molecule. Our results demonstrate that immobilization of biotinylated Fab fragments via UV-NBS(Biotin) method generated the highest level of immobilized Fab on surfaces when compared to other typical immobilization methods while preserving antigen binding activity. UV-NBS(Biotin) method provided 432-fold, 114-fold, and 29-fold improved antigen detection sensitivity than physical adsorption, NHS-Biotin, and ε-NH3(+), methods, respectively. Additionally, the limit of detection (LOD) for PSA utilizing Fab fragments immobilized via UV-NBS(Biotin) method was significantly lower than that of the other immobilization methods, with an LOD of 0.4 pM PSA. In summary, site-specific biotinylation of Fab fragments without structural damage or loss in antigen binding activity provides a wide range of application potential for UV-NBS immobilization technique across numerous diagnostic devices and nanotechnologies.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Antibodies, Immobilized / chemistry*
  • Antibodies, Immobilized / immunology*
  • Antigens / analysis*
  • Antigens / immunology*
  • Binding Sites
  • Biotinylation*
  • Immunoglobulin Fab Fragments / chemistry*
  • Immunoglobulin Fab Fragments / immunology*
  • Molecular Structure
  • Nucleotides / chemistry
  • Nucleotides / immunology*

Substances

  • Antibodies, Immobilized
  • Antigens
  • Immunoglobulin Fab Fragments
  • Nucleotides