Suspended sediment, carbon and nitrogen transport in a regulated Pyrenean river

Sci Total Environ. 2016 Jan 1:540:133-43. doi: 10.1016/j.scitotenv.2015.06.132. Epub 2015 Aug 10.

Abstract

Regulation alters the characteristics of rivers by transforming parts of them into lakes, affecting their hydrology and also the physical, chemical, and biological characteristics and dynamics. Reservoirs have proven to be very effective retaining particulate materials, thereby avoiding the downstream transport of suspended sediment and the chemical substances associated with it (e.g. Carbon, C, or Nitrogen, N). The study of fluvial transport of C and N is of great interest since river load represents a major link to the global C and N cycles. Moreover, reservoirs are the most important sinks for organic carbon among inland waters and have a potential significance as nitrogen sinks. In this respect, this paper investigates the effects of a Pyrenean reservoir on the runoff, suspended sediment, C and N derived from the highly active Ésera and Isábena rivers. Key findings indicate that the reservoir causes a considerable impact on the Ésera-Isábena river fluxes, reducing them dramatically as almost all the inputs are retained within the reservoir. Despite the very dry study year (2011-2012), it can be calculated that almost 300,000 t of suspended sediment were deposited into the Barasona Reservoir, from which more than 16,000 were C (i.e. 2200 t as organic C) and 222 t were N. These values may not be seen as remarkable in a wider global context but, assuming that around 30 h m(3) of sediment are currently stored in the reservoir, figures would increase up to ca. 2.6×10(6) t of C (i.e. 360,000 t of organic C) and 35,000 t of N. Nevertheless, these values are indicative and should be treated with caution as there is incomplete understanding of all the processes which affect C and N. Further investigation to establish a more complete picture of C and N yields and budgets by monitoring the different processes involved is essential.

Keywords: Barasona Reservoir; Carbon; Ebro basin; Nitrogen; River Ésera; Suspended sediment; Temporal dynamics.

Publication types

  • Research Support, Non-U.S. Gov't