Structure, Dynamics, and Allosteric Potential of Ionotropic Glutamate Receptor N-Terminal Domains

Biophys J. 2015 Sep 15;109(6):1136-48. doi: 10.1016/j.bpj.2015.06.061. Epub 2015 Aug 6.

Abstract

Ionotropic glutamate receptors (iGluRs) are tetrameric cation channels that mediate synaptic transmission and plasticity. They have a unique modular architecture with four domains: the intracellular C-terminal domain (CTD) that is involved in synaptic targeting, the transmembrane domain (TMD) that forms the ion channel, the membrane-proximal ligand-binding domain (LBD) that binds agonists such as L-glutamate, and the distal N-terminal domain (NTD), whose function is the least clear. The extracellular portion, comprised of the LBD and NTD, is loosely arranged, mediating complex allosteric regulation and providing a rich target for drug development. Here, we briefly review recent work on iGluR NTD structure and dynamics, and further explore the allosteric potential for the NTD in AMPA-type iGluRs using coarse-grained simulations. We also investigate mechanisms underlying the established NTD allostery in NMDA-type iGluRs, as well as the fold-related metabotropic glutamate and GABAB receptors. We show that the clamshell motions intrinsically favored by the NTD bilobate fold are coupled to dimeric and higher-order rearrangements that impact the iGluR LBD and ultimately the TMD. Finally, we explore the dynamics of intact iGluRs and describe how it might affect receptor operation in a synaptic environment.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Allosteric Regulation
  • Dimerization
  • Molecular Dynamics Simulation
  • Motion
  • Protein Structure, Tertiary
  • Receptors, AMPA / chemistry
  • Receptors, AMPA / metabolism*
  • Receptors, GABA-B / chemistry
  • Receptors, GABA-B / metabolism
  • Receptors, N-Methyl-D-Aspartate / chemistry
  • Receptors, N-Methyl-D-Aspartate / metabolism*

Substances

  • Receptors, AMPA
  • Receptors, GABA-B
  • Receptors, N-Methyl-D-Aspartate