Preparation and characterization of spray-dried co-amorphous drug-amino acid salts

J Pharm Pharmacol. 2016 May;68(5):615-24. doi: 10.1111/jphp.12458. Epub 2015 Aug 5.

Abstract

Objectives: Recently, co-amorphous drug-amino acid mixtures were introduced as a promising alternative to other amorphous stabilization approaches such as the use of polymers to form glass solutions. So far, these co-amorphous mixtures have been mainly prepared via vibrational ball milling on a lab scale. In this study, spray-drying was investigated as a scale up preparation method for co-amorphous indomethacin (IND)-amino acid mixtures. In addition, the physico-chemical properties of the different co-amorphous systems were investigated with respect to the amino acids' ability towards co-amorphous salt formation.

Methods: The mixtures were characterized for their solid state properties using differential scanning calorimetry, thermogravimetric analysis and X-ray powder diffraction. Fourier-transform infrared spectroscopy was used to analyze molecular interactions. Furthermore, intrinsic dissolution behaviour, and physical stability at various storage conditions, were examined.

Key findings: Results showed that IND could be converted into an amorphous form in combination with the amino acids arginine (ARG), histidine (HIS) and lysine (LYS) by spray-drying. Solid state characterization revealed elevated glass transition temperatures for all mixtures compared with the pure amorphous drug due to co-amorphization with the amino acids. Furthermore, strong intermolecular interactions in the form of salt/partial salt formation between the drug and amino acids were seen for all blends. All mixtures were physically stable (>10 months) at room temperature and 40°C under dry conditions. Intrinsic dissolution of the co-amorphous mixtures showed an improved dissolution behaviour under intestinal pH conditions for IND-ARG compared with the crystalline and amorphous forms of the drug. On the other hand, IND-LYS and IND-HIS revealed no significant improvement in the intrinsic dissolution rate of IND due to recrystallization of IND during dissolution.

Conclusions: It could be shown that strong intermolecular interactions between drug and co-amorphous coformer that persist during the dissolution are crucial to prevent recrystallization and to enhance dissolution of a co-amorphous formulation.

Keywords: amino acids; co-amorphous; dissolution; salts; spray-drying.

MeSH terms

  • Aerosols
  • Amino Acids / chemistry*
  • Arginine / chemistry
  • Calorimetry, Differential Scanning
  • Crystallization
  • Crystallography, X-Ray
  • Desiccation
  • Drug Compounding
  • Drug Stability
  • Freeze Drying
  • Histidine / chemistry
  • Indomethacin / analogs & derivatives
  • Indomethacin / chemistry*
  • Kinetics
  • Lysine / chemistry
  • Powder Diffraction
  • Solubility
  • Spectroscopy, Fourier Transform Infrared
  • Technology, Pharmaceutical / methods
  • Thermogravimetry
  • Transition Temperature

Substances

  • Aerosols
  • Amino Acids
  • Histidine
  • Arginine
  • Lysine
  • Indomethacin