Active decoupling of RF coils using a transmit array system

MAGMA. 2015 Dec;28(6):565-76. doi: 10.1007/s10334-015-0497-0. Epub 2015 Aug 5.

Abstract

Objective: Implementation of a decoupling method for isolation of transmit and receive radio frequency (RF) coils for concurrent excitation and acquisition (CEA) MRI in samples with ultra-short T2*.

Materials and methods: The new phase and amplitude (PA) decoupling method is implemented in a clinical 3T-MRI system equipped with a parallel transmit array system. For RF excitation, two transmit coils are used in combination with a single receive coil. The transmit coil is geometrically decoupled from the receive coil, and the remaining B 1-induced voltages in the receive coil during CEA are minimized by the second transmit coil using a careful adjustment of the phase and amplitude settings in this coil. Isolation of the decoupling scheme and transmit noise behavior are analyzed for different loading conditions, and a CEA MRI experiment is performed in a rubber phantom with sub-millisecond T2* and in an ex vivo animal.

Results: Geometrical (20 dB) and PA decoupling (50 dB) provided a total isolation of 70 dB between the transmit and receive coils. Integration of a low-noise RF amplifier was necessary to minimize RF transmit noise. CEA MR images could be reconstructed from a rubber phantom and an ex vivo animal.

Conclusion: CEA MRI can be implemented in clinical MRI systems using active decoupling with parallel transmit array capabilities with minor hardware modifications.

Keywords: Concurrent excitation and acquisition; Continuous-wave NMR; Geometrical decoupling; Phase amplitude decoupling; Transmit array.

MeSH terms

  • Amplifiers, Electronic
  • Equipment Design
  • Magnetic Resonance Imaging / instrumentation*
  • Phantoms, Imaging
  • Radio Waves