Regurgitation Hemodynamics Alone Cause Mitral Valve Remodeling Characteristic of Clinical Disease States In Vitro

Ann Biomed Eng. 2016 Apr;44(4):954-67. doi: 10.1007/s10439-015-1398-0. Epub 2015 Jul 30.

Abstract

Mitral valve regurgitation is a challenging clinical condition that is frequent, highly varied, and poorly understood. While the causes of mitral regurgitation are multifactorial, how the hemodynamics of regurgitation impact valve tissue remodeling is an understudied phenomenon. We employed a pseudo-physiological flow loop capable of long-term organ culture to investigate the early progression of remodeling in living mitral valves placed in conditions resembling mitral valve prolapse (MVP) and functional mitral regurgitation (FMR). Valve geometry was altered to mimic the hemodynamics of controls (no changes from native geometry), MVP (5 mm displacement of papillary muscles towards the annulus), and FMR (5 mm apical, 5 mm lateral papillary muscle displacement, 65% larger annular area). Flow measurements ensured moderate regurgitant fraction for regurgitation groups. After 1-week culture, valve tissues underwent mechanical and compositional analysis. MVP conditioned tissues were less stiff, weaker, and had elevated collagen III and glycosaminoglycans. FMR conditioned tissues were stiffer, more brittle, less extensible, and had more collagen synthesis, remodeling, and crosslinking related enzymes and proteoglycans, including decorin, matrix metalloproteinase-1, and lysyl oxidase. These models replicate clinical findings of MVP (myxomatous remodeling) and FMR (fibrotic remodeling), indicating that valve cells remodel extracellular matrix in response to altered mechanical homeostasis resulting from disease hemodynamics.

Keywords: Functional mitral regurgitation; Mitral valve prolapse; Mitral valve regurgitation; Myxomatous remodeling; Organ culture.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Echocardiography, Doppler, Color
  • Hemodynamics
  • In Vitro Techniques
  • Mitral Valve / diagnostic imaging
  • Mitral Valve / physiopathology
  • Mitral Valve Insufficiency / diagnostic imaging
  • Mitral Valve Insufficiency / physiopathology*
  • Mitral Valve Prolapse / diagnostic imaging
  • Mitral Valve Prolapse / physiopathology*
  • Swine