Amplitude gating for a coached breathing approach in respiratory gated 10 MV flattening filter-free VMAT delivery

J Appl Clin Med Phys. 2015 Jul 8;16(4):78–90. doi: 10.1120/jacmp.v16i4.5350.

Abstract

The purpose of this study was to investigate amplitude gating combined with a coached breathing strategy for 10 MV flattening filter-free (FFF) volumetric-modulated arc therapy (VMAT) on the Varian TrueBeam linac. Ten patient plans for VMAT SABR liver were created using the Eclipse treatment planning system (TPS). The verification plans were then transferred to a CT-scanned Quasar phantom and delivered on a TrueBeam linac using a 10 MV FFF beam and Varian's real-time position management (RPM) system for respiratory gating based on breathing amplitude. Breathing traces were acquired from ten patients using two kinds of breathing patterns: free breathing and an interrupted (~ 5 s pause) end of exhale coached breathing pattern. Ion chamber and Gafchromic film measurements were acquired for a gated delivery while the phantom moved under the described breathing patterns, as well as for a nongated stationary phantom delivery. The gate window was set to obtain a range of residual target motion from 2-5 mm. All gated deliveries on a moving phantom have been shown to be dosimetrically equivalent to the nongated deliveries on a static phantom, with differences in point dose measurements under 1% and average gamma 2%/2 mm agreement above 98.7%. Comparison with the treatment planning system also resulted in good agreement, with differences in point-dose measurements under 2.5% and average gamma 3%/3 mm agreement of 97%. The use of a coached breathing pattern significantly increases the duty cycle, compared with free breathing, and allows for shorter treatment times. Patients' free-breathing patterns contain considerable variability and, although dosimetric results for gated delivery may be acceptable, it is difficult to achieve efficient treatment delivery. A coached breathing pattern combined with a 5 mm amplitude gate, resulted in both high-quality dose distributions and overall shortest gated beam delivery times.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Humans
  • Particle Accelerators
  • Phantoms, Imaging*
  • Radiotherapy Dosage
  • Radiotherapy Planning, Computer-Assisted / methods*
  • Radiotherapy, Intensity-Modulated / methods*
  • Respiration*
  • Respiratory-Gated Imaging Techniques / methods*