Effects of norepinephrine on tissue perfusion in a sheep model of intra-abdominal hypertension

Intensive Care Med Exp. 2015 Dec;3(1):46. doi: 10.1186/s40635-015-0046-1. Epub 2015 Mar 31.

Abstract

Background: The aim of the study was to describe the effects of intra-abdominal hypertension (IAH) on regional and microcirculatory intestinal blood flow, renal blood flow, and urine output, as well as their response to increases in blood pressure induced by norepinephrine.

Methods: This was a pilot, controlled study, performed in an animal research laboratory. Twenty-four anesthetized and mechanically ventilated sheep were studied. We measured systemic hemodynamics, superior mesenteric and renal blood flow, villi microcirculation, intramucosal-arterial PCO2, urine output, and intra-abdominal pressure. IAH (20 mm Hg) was generated by intraperitoneal instillation of warmed saline. After 1 h of IAH, sheep were randomized to IAH control (n = 8) or IAH norepinephrine (n = 8) groups, for 1 h. In this last group, mean arterial pressure was increased about 20 mm Hg with norepinephrine. A sham group (n = 8) was also studied. Fluids were administered to prevent decreases in cardiac output. Differences between groups were analyzed with two-way repeated measures of analysis of variance (ANOVA).

Results: After 2 h of IAH, abdominal perfusion pressure decreased in IAH control group compared to IAH norepinephrine and sham groups (49 ± 11, 73 ± 11, and 86 ± 15 mm Hg, P < 0.0001). There were no differences in superior mesenteric artery blood flow, intramucosal-arterial PCO2, and villi microcirculation among groups. Renal blood flow (49 ± 30, 32 ± 24, and 102 ± 45 mL.min(-1).kg(-1), P < 0.0001) and urinary output (0.3 ± 0.1, 0.2 ± 0.2, and 1.0 ± 0.6 mL.h(-1).kg(-1), P < 0.0001) were decreased in IAH control and IAH norepinephrine groups, compared to the sham group.

Conclusions: In this experimental model of IAH, the gut and the kidney had contrasting responses: While intestinal blood flow and villi microcirculation remained unchanged, renal perfusion and urine output were severely compromised.