Ceramide channels: destabilization by Bcl-xL and role in apoptosis

Biochim Biophys Acta. 2015 Oct;1848(10 Pt A):2374-84. doi: 10.1016/j.bbamem.2015.07.013. Epub 2015 Jul 26.

Abstract

Ceramide is a bioactive sphingolipid involved in mitochondrial-mediated apoptosis. Our data suggest that ceramides directly regulate a key initiation step in apoptosis: mitochondrial outer membrane permeabilization (MOMP). MOMP allows release of intermembrane space proteins to the cytosol, inducing the execution of the cell. Ceramides form channels in planar phospholipid membranes and outer membranes of isolated mitochondria, channels large enough to facilitate passage of proteins released during MOMP. Bcl-xL inhibits MOMP in vivo and inhibits the formation of ceramide channels in vitro. However the significance of Bcl-xL's regulation of ceramide channel formation within cells was untested. We engineered Bcl-xL point mutations that specifically affect the interaction between ceramide and Bcl-xL to probe the mechanism of ceramide channel regulation and the role of ceramide channels in apoptosis. Using these mutants and fluorescently-labeled ceramide, we identified the hydrophobic groove on Bcl-xL as the critical ceramide binding site and regulator of ceramide channel formation. Bcl-xL mutants with weakened interaction with ceramide also have reduced ability to interfere with ceramide channel formation. Some mutants have similar altered ability to inhibit both ceramide and Bax channel formation, whereas others act differentially, suggesting distinct but overlapping binding sites. To probe the relative importance of these channels in apoptosis, Bcl-xL mutant proteins were stably expressed in Bcl-xL deficient cells. Weakening the inhibition of either Bax or ceramide channels decreased the ability of Bcl-xL to protect cells from apoptosis in a stimulus-dependent manner. These studies provide the first in vivo evidence for the role of ceramide channels in MOMP.

Keywords: Apoptosis; Bax; Bcl-2; Mitochondria; Outer membrane; Sphingolipid.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Apoptosis / physiology
  • Binding Sites
  • Cell Membrane Permeability / physiology
  • Cells, Cultured
  • Ceramides / chemistry*
  • Ceramides / metabolism*
  • Humans
  • Mice
  • Mitochondria, Liver / physiology*
  • Mitochondria, Liver / ultrastructure
  • Mitochondrial Membranes / physiology*
  • Mitochondrial Membranes / ultrastructure
  • Molecular Dynamics Simulation
  • Protein Binding
  • Rats
  • Rats, Sprague-Dawley
  • bcl-X Protein / chemistry*
  • bcl-X Protein / metabolism*

Substances

  • Bcl2l1 protein, rat
  • Ceramides
  • bcl-X Protein