What have we learned from global change manipulative experiments in China? A meta-analysis

Sci Rep. 2015 Jul 24:5:12344. doi: 10.1038/srep12344.

Abstract

Although China has the largest population in the world, a faster rate of warming than the global average, and an active global change research program, results from many of the global change experiments in Chinese terrestrial ecosystems have not been included in global syntheses. Here, we specifically analyze the observed responses of carbon (C) and nitrogen (N) cycling in global change manipulative experiments in China, and compare these responses to those from other regions of the world. Most global change factors, vegetation types, and treatment methods that have been studied or used elsewhere in the world have also been studied and applied in China. The responses of terrestrial ecosystem C and N cycles to N addition and climate warming in China are similar in both direction and intensity to those reported in global syntheses. In Chinese ecosystems as elsewhere, N addition significantly increased aboveground (AGB) and belowground biomass (BGB), litter mass, dissolved organic C, net ecosystem productivity (NEP), and gross ecosystem productivity (GEP). Warming stimulated AGB, BGB and the root-shoot ratio. Increasing precipitation accelerated GEP, NEP, microbial respiration, soil respiration, and ecosystem respiration. Our findings complement and support previous global syntheses and provide insight into regional responses to global change.

Publication types

  • Meta-Analysis
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carbon / chemistry*
  • China
  • Ecosystem*
  • Global Warming*
  • Nitrogen / chemistry*

Substances

  • Carbon
  • Nitrogen