Narrow Magnonic Waveguides Based on Domain Walls

Phys Rev Lett. 2015 Jun 19;114(24):247206. doi: 10.1103/PhysRevLett.114.247206. Epub 2015 Jun 18.

Abstract

The channeling of spin waves with domain walls in ultrathin ferromagnetic films is demonstrated theoretically and through micromagnetics simulations. It is shown that propagating excitations localized to the wall, which appear in the frequency gap of bulk spin wave modes, can be guided in curved geometries and propagate in close proximity to other channels. For Néel-type walls arising from a Dzyaloshinskii-Moriya interaction, the channeling is strongly nonreciprocal and group velocities can exceed 1 km/s in the long wavelength limit for certain propagation directions. The channeled modes represent an unusual analogy of whispering gallery waves that are one dimensional and nonreciprocal with this interaction. Moreover, a sufficiently strong Dzyaloshinskii-Moriya interaction can create a degeneracy of channeled and propagating modes at a critical wave vector.