Pragmatic phenomenological types

Prog Biophys Mol Biol. 2015 Dec;119(3):420-36. doi: 10.1016/j.pbiomolbio.2015.07.006. Epub 2015 Jul 18.

Abstract

We approach a well-known problem: how to relate component physical processes in biological systems to governing imperatives in multiple system levels. The intent is to further practical tools that can be used in the clinical context. An example proposes a formal type system that would support this kind of reasoning, including in machines. Our example is based on a model of the connection between a quality of mind associated with creativity and neuropsychiatric dynamics: constructing narrative as a form of conscious introspection, which allows the manipulation of one's own driving imperatives. In this context, general creativity is indicated by an ability to manage multiple heterogeneous worldviews simultaneously in a developing narrative. 'Narrative' in this context is framed as the organizing concept behind rational linearization that can be applied to metaphysics as well as modeling perceptive dynamics. Introspection is framed as the phenomenological 'tip' that allows a perceiver to be within experience or outside it, reflecting on and modifying it. What distinguishes the approach is the rooting in well founded but disparate disciplines: phenomenology, ontic virtuality, two-sorted geometric logics, functional reactive programming, multi-level ontologies and narrative cognition. This paper advances the work by proposing a type strategy within a two-sorted reasoning system that supports cross-ontology structure. The paper describes influences on this approach, and presents an example that involves phenotype classes and monitored creativity enhanced by both soft methods and transcranial direct-current stimulation. The proposed solution integrates pragmatic phenomenology, situation theory, narratology and functional programming in one framework.

Keywords: Abstraction; Quantum interaction; Situation theory; Two-sorted reasoning; Type systems.

Publication types

  • Review

MeSH terms

  • Biology / methods*
  • Humans
  • Knowledge Bases
  • Neuropsychiatry
  • Philosophy*
  • Physics