A New Ligustrazine Derivative-Selective Cytotoxicity by Suppression of NF-κB/p65 and COX-2 Expression on Human Hepatoma Cells. Part 3

Int J Mol Sci. 2015 Jul 17;16(7):16401-13. doi: 10.3390/ijms160716401.

Abstract

A new anticancer ligustrazine derivative, 3β-hydroxyolea-12-en-28-oic acid- 3,5,6-trimethylpyrazin-2-methylester (T-OA, C38H58O3N2), was previously reported. It was synthesized via conjugating hepatoprotective and anticancer ingredients of traditional Chinese medicine. We found that T-OA exerted its anticancer activity by preventing the expression of nuclear transcription factor NF-κB/p65 and COX-2 in S180 mice. However, the selective cytotoxicity of T-OA on various kinds of cell lines has not been studied sufficiently. In the present study, compared with Cisplatin, T-OA was more toxic to human hepatoma cell line Bel-7402 (IC50 = 6.36 ± 1.56 µM) than other three cancer cell lines (HeLa, HT-29, BGC-823), and no toxicity was observed toward Madin-Darby canine kidney cell line MDCK (IC50 > 150 µM). The morphological changes of Bel-7402 cells demonstrated that T-OA had an apoptosis-inducing effect which had been substantiated using 4',6-diamidino-2-phenylindole (DAPI) staining, acridine orange (AO)/ethidium bromide (EB) staining, flow cytometry and mitochondrial membrane potential assay. Combining the immumohistochemical staining, we found T-OA could prevent the expression of NF-κB/p65 and COX-2 in Bel-7402 cells. Both of the proteins have been known to play roles in apoptosis and are mainly located in the nuclei. Moreover subcellular localization was performed to reveal that T-OA exerts in nuclei of Bel-7402 cells. The result was in accordance with the effects of down-regulating the expression of NF-κB/p65 and COX-2.

Keywords: NF-κB/p65 and COX-2; hepatoma; ligustrazine derivative; selective cytotoxicity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antineoplastic Agents / pharmacology*
  • Apoptosis / drug effects*
  • Carcinoma, Hepatocellular / metabolism*
  • Cyclooxygenase 2 / genetics
  • Cyclooxygenase 2 / metabolism*
  • Dogs
  • HT29 Cells
  • HeLa Cells
  • Humans
  • Madin Darby Canine Kidney Cells
  • Pyrazines / pharmacology*
  • Transcription Factor RelA / genetics
  • Transcription Factor RelA / metabolism*

Substances

  • Antineoplastic Agents
  • Pyrazines
  • Transcription Factor RelA
  • Cyclooxygenase 2
  • tetramethylpyrazine