Transparent material thickness measurements by Raman scattering

Appl Opt. 2015 Jul 1;54(19):5943-8. doi: 10.1364/AO.54.005943.

Abstract

An efficient and simple and convenient technique for transparent samples thickness measurements by Raman spectroscopy is suggested. The elastic scattering can be effectively used for sample border indication if the refractive index changes more than 3%, while it fails to detect an ice-to-water border of floating ice. The alternative is to use Raman spectroscopy to detect the interface between different layers of transparent materials. The difference between the Raman spectra of poly methyl methacrylate (PMMA) and water, and between ice and liquid water were employed to locate the PMMA-water and ice-water interfaces, while elastic scattering was used for air-solid surface detection. This approach yields an error of 2%-5% indicating that it is promising to express a remote and noninvasive thickness measurement technique in field experiments.