Low-loss and low wavelength-dependence vertical interlayer transition for 3D silicon photonics

Opt Express. 2015 Jul 13;23(14):18602-10. doi: 10.1364/OE.23.018602.

Abstract

This paper presents optimized design and measurement results for a low-loss broadband vertical interlayer transition (VIT) device located between lower and upper Si nano-photonic waveguides. The device comprises the lower c-Si taper, the upper a-Si:H taper, and a wide and thin SiON secondary core with a 0.6-μm-thick SiO₂ interlayer. The device structure facilitates the low loss VIT, giving insertion losses of 0.87 and 0.79 dB for quasi-TE and TM modes, respectively, at 1550 nm. Also, the evanescent coupling nature of the VIT device renders it wavelength- and polarization-insensitive, leading to loss variation of within 0.5 dB in the C-band.