Magnetic multi-granule nanoclusters: A model system that exhibits universal size effect of magnetic coercivity

Sci Rep. 2015 Jul 17:5:12135. doi: 10.1038/srep12135.

Abstract

It is well known that the coercivity of magnetic nanomaterials increases up to a maximum and then decreases to zero with decreasing particle size. However, until now, no single synthesis method has been able to produce magnetic nanoparticles with a wide range of sizes, i.e., from 10 to 500 nm, in order to uncover the coercivity evolution. Here we report the characterization of magnetite (Fe3O4) multi-granule nanoclusters (MGNCs) to demonstrate the transitional behaviour of coercivity. The M-H curves indicate that our samples had a relatively high saturation magnetization (MS) value of ~70 emu/g and that the coercivity (Hc) increased to the maximum value of ~48 Oe until the nanoclusters reached a size of ~120 nm; the coercivity then gradually decreased to zero.

Publication types

  • Research Support, Non-U.S. Gov't