Exercise-induced differential changes in gene expression among arterioles of skeletal muscles of obese rats

J Appl Physiol (1985). 2015 Sep 15;119(6):583-603. doi: 10.1152/japplphysiol.00316.2015. Epub 2015 Jul 16.

Abstract

Using next-generation, transcriptome-wide RNA sequencing (RNA-Seq) technology we assessed the effects of exercise training on transcriptional profiles in skeletal muscle arterioles isolated from the soleus and gastrocnemius muscles of Otsuka Long Evans Tokushima Fatty (OLETF) rats that underwent an endurance exercise training program (EX; n = 13), interval sprint training program (SPRINT; n = 14), or remained sedentary (Sed; n = 12). We hypothesized that the greatest effects of exercise would be in the gastrocnemius arterioles. Results show that EX caused the largest number of changes in gene expression in the soleus and white gastrocnemius 2a arterioles with little to no changes in the feed arteries. In contrast, SPRINT caused substantial changes in gene expression in the feed arteries. IPA canonical pathway analysis revealed 18 pathways with significant changes in gene expression when analyzed across vessels and revealed that EX induces increased expression of the following genes in all arterioles examined: Shc1, desert hedgehog protein (Dhh), adenylate cyclase 4 (Adcy4), G protein binding protein, alpha (Gnat1), and Bcl2l1 and decreased expression of ubiquitin D (Ubd) and cAMP response element modulator (Crem). EX increased expression of endothelin converting enzyme (Ece1), Hsp90b, Fkbp5, and Cdcl4b in four of five arterioles. SPRINT had effects on expression of Crem, Dhh, Bcl2l1, and Ubd that were similar to EX. SPRINT also increased expression of Nfkbia, Hspa5, Tubb 2a and Tubb 2b, and Fkbp5 in all five arterioles and increased expression of Gnat1 in all but the soleus second-order arterioles. Many contractile and/or structural protein genes were increased by SPRINT in the gastrocnemius feed artery, but the same genes exhibited decreased expression in red gastrocnemius arterioles. We conclude that training-induced changes in arteriolar gene expression patterns differ by muscle fiber type composition and along the arteriolar tree.

Keywords: blood flow; endurance exercise; gene expression; interval sprint training; next-generation sequencing; resistance arteries.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Arterioles / metabolism
  • Arterioles / physiopathology*
  • Gene Expression / physiology*
  • Male
  • Muscle Contraction / physiology
  • Muscle, Skeletal / metabolism
  • Muscle, Skeletal / physiopathology*
  • Obesity / metabolism
  • Obesity / physiopathology*
  • Physical Conditioning, Animal / physiology*
  • Physical Endurance / physiology
  • Rats
  • Rats, Inbred OLETF
  • Signal Transduction / physiology
  • Transcriptome / physiology