Evidence for Kinetic Limitations as a Controlling Factor of Ge Pyramid Formation: a Study of Structural Features of Ge/Si(001) Wetting Layer Formed by Ge Deposition at Room Temperature Followed by Annealing at 600 °C

Nanoscale Res Lett. 2015 Dec;10(1):994. doi: 10.1186/s11671-015-0994-0. Epub 2015 Jul 16.

Abstract

The article presents an experimental study of an issue of whether the formation of arrays of Ge quantum dots on the Si(001) surface is an equilibrium process or it is kinetically controlled. We deposited Ge on Si(001) at the room temperature and explored crystallization of the disordered Ge film as a result of annealing at 600 °C. The experiment has demonstrated that the Ge/Si(001) film formed in the conditions of an isolated system consists of the standard patched wetting layer and large droplike clusters of Ge rather than of huts or domes which appear when a film is grown in a flux of Ge atoms arriving on its surface. We conclude that the growth of the pyramids appearing at temperatures greater than 600 °C is controlled by kinetics rather than thermodynamic equilibrium whereas the wetting layer is an equilibrium structure.

Pacs: Primary 68.37.Ef; 68.55.Ac; 68.65.Hb; 81.07.Ta; 81.16.Dn.