Optimization for high-energy and high-efficiency broadband optical parametric chirped-pulse amplification in LBO near 800 nm

Opt Lett. 2015 Jul 15;40(14):3412-5. doi: 10.1364/OL.40.003412.

Abstract

In this Letter, we present a study of high-energy and high-conversion-efficiency broadband optical parametric chirped-pulse amplification (OPCPA) system with a 100 mm×100 mm×17 mm LBO crystal near 800 nm. The results showed that the back-conversion was sensitively affected by the pump intensity and the injected signal intensity. It occurred when the injected signal was above 0.82 J with a pump energy of 170 J, and this effect also reshaped the amplified spectrum. After optimization, an amplified energy of 45.3 J was achieved with a conversion efficiency of 26.3% by the OPCPA. The peak power of the hybrid CPA-OPCPA laser system reached 1.02 PW with a compressed duration of 32 fs, which is the first reported OPCPA peak power higher than 1 PW, to the best of our knowledge.