Sustained release of calcium hydroxide from poly(DL-lactide-co-glycolide) acid microspheres for apexification

Odontology. 2016 Sep;104(3):318-23. doi: 10.1007/s10266-015-0213-6. Epub 2015 Jul 15.

Abstract

Calcium hydroxide (CH) loaded poly(DL-lactide-co-glycolide) acid (PLGA) microspheres (MS) might be used for apexification requiring a sustained release of Ca(2+). The aim of this study was to formulate and characterize CH-PLGA-MS. The CH-loaded MS were prepared by either oil-in-water (O/W) or water-in-oil/in-water (W/O/W) emulsion solvent evaporation technique. MS produced by the O/W technique exhibited a larger diameter (18.63 ± 7.23 μm) than the MS produced by the W/O/W technique (15.25 ± 7.37 μm) (Mann-Whitney U test P < 0.001). The CH encapsulation efficiency (E e) and Ca(2+) release were calculated from data obtained by absorption techniques. Ca(2+) release profile was evaluated for 30 days. To know the E e, the CH-loaded MS were dissolved in 1 M NaOH to release all its content and a Ca(2+) colorimetric marker was added to this solution. The reagent marked the Ca(2+) in blue color, which was then measured by a UV-Vis system (650 nm). The percentage of E e was calculated on the basis of the theoretical loading. The E e of the O/W-produced MS was higher (24 %) than the corresponding percentage of the W/O/W-produced MS (11 %). O/W- and W/O/W-produced MS released slower and lower Ca(2+) than a control CH paste with polyethylene glycol 400 (Kruskal-Wallis test). O/W-produced MS released higher Ca(2+) than W/O/W-produced MS (statistically significant differences; P < 0.05). In conclusion, the CH-PLGA-MS were successfully formulated; the technique of formulation influenced the size, encapsulation efficiency and release profile. The MS were better sustained release system than the CH paste.

Keywords: Apexification; Calcium hydroxide; Microspheres; Poly(DL-lactide-co-glycolide) acid; Sustained drug delivery system.

MeSH terms

  • Apexification*
  • Biocompatible Materials / chemistry*
  • Calcium Hydroxide / chemistry*
  • Delayed-Action Preparations
  • Lactic Acid / chemistry*
  • Microscopy, Electron, Scanning
  • Microspheres
  • Particle Size
  • Polyglycolic Acid / chemistry*
  • Polylactic Acid-Polyglycolic Acid Copolymer

Substances

  • Biocompatible Materials
  • Delayed-Action Preparations
  • Polylactic Acid-Polyglycolic Acid Copolymer
  • Polyglycolic Acid
  • Lactic Acid
  • Calcium Hydroxide